Global solutions of the compressible euler-poisson equations with large initial data of spherical symmetry
We are concerned with a global existence theory for finite-energy solutions of the multidimensional Euler-Poisson equations for both compressible gaseous stars and plasmas with large initial data of spherical symmetry. One of the main challenges is the strengthening of waves as they move radially in...
Hlavní autoři: | Chen, G-Q, He, L, Wang, Y, Yuan, D |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Wiley
2023
|
Podobné jednotky
-
Global finite-energy solutions of the compressible Euler–Poisson equations for general pressure laws with large initial data of spherical symmetry
Autor: Chen, G-QG, a další
Vydáno: (2024) -
Global solutions of the compressible Euler equations with large initial data of spherical symmetry and positive far-field density
Autor: Chen, G-QG, a další
Vydáno: (2022) -
Blowup Phenomenon of Solutions for the IBVP of the Compressible Euler Equations in Spherical Symmetry
Autor: Ka Luen Cheung, a další
Vydáno: (2016-01-01) -
Blowup Phenomena for the Compressible Euler and Euler-Poisson Equations with Initial Functional Conditions
Autor: Sen Wong, a další
Vydáno: (2014-01-01) -
Global Existence and Large Time Behavior of Solutions to the Bipolar Nonisentropic Euler-Poisson Equations
Autor: Min Chen, a další
Vydáno: (2014-01-01)