Denoising scanner effects from multimodal MRI data using linked independent component analysis
Pooling magnetic resonance imaging (MRI) data across research studies, or utilizing shared data from imaging repositories, presents exceptional opportunities to advance and enhance reproducibility of neuroscience research. However, scanner confounds hinder pooling data collected on different scanner...
Asıl Yazarlar: | Li, H, Smith, SM, Gruber, S, Lukas, SE, Silveri, MM, Hill, KP, Killgore, WDS, Nickerson, LD |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
Elsevier
2019
|
Benzer Materyaller
-
Denoising scanner effects from multimodal MRI data using linked independent component analysis
Yazar:: Huanjie Li, ve diğerleri
Baskı/Yayın Bilgisi: (2020-03-01) -
Multimodal Imaging and Hybrid Scanners
Yazar:: Haim Azhari, ve diğerleri
Baskı/Yayın Bilgisi: (2007-01-01) -
Linked independent component analysis for multimodal data fusion.
Yazar:: Groves, A, ve diğerleri
Baskı/Yayın Bilgisi: (2011) -
Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers.
Yazar:: Salimi-Khorshidi, G, ve diğerleri
Baskı/Yayın Bilgisi: (2014) -
Multimodality Registration without a Dedicated Multimodality Scanner
Yazar:: Bradley J. Beattie, ve diğerleri
Baskı/Yayın Bilgisi: (2007-03-01)