Spin quantum Hall transition in disordered superconductors

We study a delocalization transition for non-interacting quasiparticles moving in two dimensions, which belongs to a new symmetry class. This symmetry class can be realized in a dirty, gapless superconductor in which time-reversal symmetry for orbital motion is broken, but spin rotation symmetry is...

Cijeli opis

Bibliografski detalji
Glavni autori: Kagalovsky, V, Horovitz, B, Avishai, Y, Chalker, J
Format: Conference item
Izdano: 2001
Opis
Sažetak:We study a delocalization transition for non-interacting quasiparticles moving in two dimensions, which belongs to a new symmetry class. This symmetry class can be realized in a dirty, gapless superconductor in which time-reversal symmetry for orbital motion is broken, but spin rotation symmetry is intact. We find a direct transition between two insulating phases with quantized Hall conductances of zero and two for the conserved quasiparticles. The energy of quasiparticles acts as a relevant, symmetry-breaking field at the critical point, which splits the direct transition into two conventional plateau transitions. (C) 2001 Elsevier Science B.V. All rights reserved.