EPR of photoexcited triplet state acceptor porphyrins

The photoexcited triplet states of porphyrin architectures are of significant interest in a wide range of fields including molecular wires, non-linear optics and molecular spintronics. Electron paramagnetic resonance (EPR) is a key spectroscopic tool in the characterization of these transient parama...

Full description

Bibliographic Details
Main Authors: Redman, A, Moise, G, Richert, S, Viere, E, Myers, W, Therien, M, Timmel, C
Format: Journal article
Language:English
Published: American Chemical Society 2021
Description
Summary:The photoexcited triplet states of porphyrin architectures are of significant interest in a wide range of fields including molecular wires, non-linear optics and molecular spintronics. Electron paramagnetic resonance (EPR) is a key spectroscopic tool in the characterization of these transient paramagnetic states singularly well suited to quantify spin delocalization. Previous work proposed a means of extracting the absolute sign of zero-field splitting (ZFS) parameters, D and E, and triplet sublevel populations by transient continuous wave, hyperfine measurements, and magnetophotoselection. Here, we present challenges of this methodology for a series of meso-perfluoroalkyl substituted zinc porphyrin monomers with orthorhombic symmetries, where interpretation of experimental data must proceed with caution and the validity of the assumptions used in the analysis must be scrutinized. The EPR data are discussed alongside quantum chemical calculations, employing both DFT and CASSCF methodologies. Despite some success of the latter in quantifying the magnitude of the ZFS interaction, the results clearly provide motivation to develop improved methods for ZFS calculations of highly delocalized organic triplet states.