Occluded video instance segmentation: dataset and challenge
Although deep learning methods have achieved advanced video object recognition performance in recent years, perceiving heavily occluded objects in a video is still a very challenging task. To promote the development of occlusion understanding, we collect a large-scale dataset called OVIS for video i...
Päätekijät: | Qi, J, Gao, Y, Hu, Y, Wang, X, Liu, X, Bai, X, Belongie, S, Yuille, A, Torr, P, Bai, S |
---|---|
Aineistotyyppi: | Conference item |
Kieli: | English |
Julkaistu: |
NeurIPS
2021
|
Samankaltaisia teoksia
-
Occluded video instance segmentation: A benchmark
Tekijä: Qi, J, et al.
Julkaistu: (2022) -
An empirical study of detection-based video instance segmentation
Tekijä: Wang, Q, et al.
Julkaistu: (2020) -
MOSE: a new dataset for video object segmentation in complex scenes
Tekijä: Ding, H, et al.
Julkaistu: (2024) -
Recurrent instance segmentation
Tekijä: Romera-Paredes, B, et al.
Julkaistu: (2016) -
Video instance segmentation 2019: A winning approach for combined detection, segmentation, classification and tracking
Tekijä: Luiten, J, et al.
Julkaistu: (2020)