Homogenization of a spectral problem in neutronic multigroup diffusion

This paper is concerned with the homogenization of an eigenvalue problem in a periodic heterogeneous domain for the multigroup neutron diffusion system. Such a model is used for studying the criticality of nuclear reactor cores. We prove that the first eigenvector of the multigroup system in the per...

Full description

Bibliographic Details
Main Authors: Allaire, G, Capdeboscq, Y
Format: Journal article
Language:English
Published: 2000
_version_ 1797060404825817088
author Allaire, G
Capdeboscq, Y
author_facet Allaire, G
Capdeboscq, Y
author_sort Allaire, G
collection OXFORD
description This paper is concerned with the homogenization of an eigenvalue problem in a periodic heterogeneous domain for the multigroup neutron diffusion system. Such a model is used for studying the criticality of nuclear reactor cores. We prove that the first eigenvector of the multigroup system in the periodicity cell controls the oscillatory behaviour of the solutions, whereas the global trend is asymptotically given by a homogenized diffusion eigenvalue problem. The neutron flux, corresponding to the first eigenvector of the multigroup system, tends to the product of the first periodic and homogenized eigenvectors. This result justifies and improves the engineering procedure used in practice for nuclear reactor core computation. © 2000 Elsevier Science S.A.
first_indexed 2024-03-06T20:16:39Z
format Journal article
id oxford-uuid:2c5ab73f-1517-44e7-b75d-c712d0d9ccd7
institution University of Oxford
language English
last_indexed 2024-03-06T20:16:39Z
publishDate 2000
record_format dspace
spelling oxford-uuid:2c5ab73f-1517-44e7-b75d-c712d0d9ccd72022-03-26T12:36:36ZHomogenization of a spectral problem in neutronic multigroup diffusionJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:2c5ab73f-1517-44e7-b75d-c712d0d9ccd7EnglishSymplectic Elements at Oxford2000Allaire, GCapdeboscq, YThis paper is concerned with the homogenization of an eigenvalue problem in a periodic heterogeneous domain for the multigroup neutron diffusion system. Such a model is used for studying the criticality of nuclear reactor cores. We prove that the first eigenvector of the multigroup system in the periodicity cell controls the oscillatory behaviour of the solutions, whereas the global trend is asymptotically given by a homogenized diffusion eigenvalue problem. The neutron flux, corresponding to the first eigenvector of the multigroup system, tends to the product of the first periodic and homogenized eigenvectors. This result justifies and improves the engineering procedure used in practice for nuclear reactor core computation. © 2000 Elsevier Science S.A.
spellingShingle Allaire, G
Capdeboscq, Y
Homogenization of a spectral problem in neutronic multigroup diffusion
title Homogenization of a spectral problem in neutronic multigroup diffusion
title_full Homogenization of a spectral problem in neutronic multigroup diffusion
title_fullStr Homogenization of a spectral problem in neutronic multigroup diffusion
title_full_unstemmed Homogenization of a spectral problem in neutronic multigroup diffusion
title_short Homogenization of a spectral problem in neutronic multigroup diffusion
title_sort homogenization of a spectral problem in neutronic multigroup diffusion
work_keys_str_mv AT allaireg homogenizationofaspectralprobleminneutronicmultigroupdiffusion
AT capdeboscqy homogenizationofaspectralprobleminneutronicmultigroupdiffusion