Homogenization of a spectral problem in neutronic multigroup diffusion
This paper is concerned with the homogenization of an eigenvalue problem in a periodic heterogeneous domain for the multigroup neutron diffusion system. Such a model is used for studying the criticality of nuclear reactor cores. We prove that the first eigenvector of the multigroup system in the per...
Hlavní autoři: | Allaire, G, Capdeboscq, Y |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
2000
|
Podobné jednotky
-
Homogenization of a neutronic multigroup evolution model
Autor: Capdeboscq, Y
Vydáno: (2000) -
Homogenization of a neutronic critical diffusion problem with drift
Autor: Capdeboscq, Y
Vydáno: (2002) -
Homogenization of a one-dimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions
Autor: Allaire, G, a další
Vydáno: (2012) -
Unstructured Grids and the Multigroup Neutron Diffusion Equation
Autor: German Theler
Vydáno: (2013-01-01) -
Homogenization and localization for a 1-D eigenvalue problem in a periodic medium with an interface
Autor: Allaire, G, a další
Vydáno: (2002)