Homogenization of a spectral problem in neutronic multigroup diffusion
This paper is concerned with the homogenization of an eigenvalue problem in a periodic heterogeneous domain for the multigroup neutron diffusion system. Such a model is used for studying the criticality of nuclear reactor cores. We prove that the first eigenvector of the multigroup system in the per...
Päätekijät: | Allaire, G, Capdeboscq, Y |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
2000
|
Samankaltaisia teoksia
-
Homogenization of a neutronic multigroup evolution model
Tekijä: Capdeboscq, Y
Julkaistu: (2000) -
Homogenization of a neutronic critical diffusion problem with drift
Tekijä: Capdeboscq, Y
Julkaistu: (2002) -
Homogenization of a one-dimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions
Tekijä: Allaire, G, et al.
Julkaistu: (2012) -
Unstructured Grids and the Multigroup Neutron Diffusion Equation
Tekijä: German Theler
Julkaistu: (2013-01-01) -
Homogenization and localization for a 1-D eigenvalue problem in a periodic medium with an interface
Tekijä: Allaire, G, et al.
Julkaistu: (2002)