Homogenization of a spectral problem in neutronic multigroup diffusion
This paper is concerned with the homogenization of an eigenvalue problem in a periodic heterogeneous domain for the multigroup neutron diffusion system. Such a model is used for studying the criticality of nuclear reactor cores. We prove that the first eigenvector of the multigroup system in the per...
Những tác giả chính: | Allaire, G, Capdeboscq, Y |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
2000
|
Những quyển sách tương tự
-
Homogenization of a neutronic multigroup evolution model
Bằng: Capdeboscq, Y
Được phát hành: (2000) -
Homogenization of a neutronic critical diffusion problem with drift
Bằng: Capdeboscq, Y
Được phát hành: (2002) -
Homogenization of a one-dimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions
Bằng: Allaire, G, et al.
Được phát hành: (2012) -
Unstructured Grids and the Multigroup Neutron Diffusion Equation
Bằng: German Theler
Được phát hành: (2013-01-01) -
Homogenization and localization for a 1-D eigenvalue problem in a periodic medium with an interface
Bằng: Allaire, G, et al.
Được phát hành: (2002)