QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments
QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. The model uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial d...
Main Authors: | , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
COPERNICUS GESELLSCHAFT MBH
2008
|
_version_ | 1797060430648049664 |
---|---|
author | Williams, P Haine, T Read, P Lewis, SR Yamazaki, Y |
author_facet | Williams, P Haine, T Read, P Lewis, SR Yamazaki, Y |
author_sort | Williams, P |
collection | OXFORD |
description | QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. The model uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments. |
first_indexed | 2024-03-06T20:17:01Z |
format | Journal article |
id | oxford-uuid:2c7504ef-c209-40be-8d48-b1d0f6519696 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T20:17:01Z |
publishDate | 2008 |
publisher | COPERNICUS GESELLSCHAFT MBH |
record_format | dspace |
spelling | oxford-uuid:2c7504ef-c209-40be-8d48-b1d0f65196962022-03-26T12:37:22ZQUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experimentsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:2c7504ef-c209-40be-8d48-b1d0f6519696EnglishSymplectic Elements at OxfordCOPERNICUS GESELLSCHAFT MBH2008Williams, PHaine, TRead, PLewis, SRYamazaki, YQUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. The model uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments. |
spellingShingle | Williams, P Haine, T Read, P Lewis, SR Yamazaki, Y QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments |
title | QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments |
title_full | QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments |
title_fullStr | QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments |
title_full_unstemmed | QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments |
title_short | QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments |
title_sort | quagmire v1 3 a quasi geostrophic model for investigating rotating fluids experiments |
work_keys_str_mv | AT williamsp quagmirev13aquasigeostrophicmodelforinvestigatingrotatingfluidsexperiments AT hainet quagmirev13aquasigeostrophicmodelforinvestigatingrotatingfluidsexperiments AT readp quagmirev13aquasigeostrophicmodelforinvestigatingrotatingfluidsexperiments AT lewissr quagmirev13aquasigeostrophicmodelforinvestigatingrotatingfluidsexperiments AT yamazakiy quagmirev13aquasigeostrophicmodelforinvestigatingrotatingfluidsexperiments |