Robust Full Bayesian Learning for Radial Basis Networks

We propose a hierarchical full Bayesian model for radial basis networks. This model treats the model dimension (number of neurons), model parameters, regularization parameters, and noise parameters as unknown random variables. We develop a reversible-jump Markov chain Monte Carlo (MCMC) method to pe...

Descrizione completa

Dettagli Bibliografici
Autori principali: Andrieu, C, De Freitas, N, Doucet, A
Natura: Journal article
Pubblicazione: 2001