Separating the “chirp” from the “chat”: self-supervised visual grounding of sound and language
We present DenseAV, a novel dual encoder grounding architecture that learns high-resolution, semantically meaningful, and audio-visual aligned features solely through watching videos. We show that DenseAV can discover the “meaning” of words and the “location” of sounds without explicit localization...
主要な著者: | Hamilton, M, Zisserman, A, Hershey, JR, Freeman, WT |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
IEEE
2024
|
類似資料
-
Multi-task self-supervised visual learning
著者:: Doersch, C, 等
出版事項: (2017) -
Ambient Sound Provides Supervision for Visual Learning
著者:: Owens, Andrew Hale, 等
出版事項: (2017) -
Learning Sight from Sound: Ambient Sound Provides Supervision for Visual Learning
著者:: Owens, Andrew, 等
出版事項: (2021) -
Self-Supervised Learning for Audio-Visual Relationships of Videos With Stereo Sounds
著者:: Tomoya Sato, 等
出版事項: (2022-01-01) -
Self-supervised learning of audio-visual objects from video
著者:: Afouras, T, 等
出版事項: (2020)