Separating the “chirp” from the “chat”: self-supervised visual grounding of sound and language
We present DenseAV, a novel dual encoder grounding architecture that learns high-resolution, semantically meaningful, and audio-visual aligned features solely through watching videos. We show that DenseAV can discover the “meaning” of words and the “location” of sounds without explicit localization...
Автори: | Hamilton, M, Zisserman, A, Hershey, JR, Freeman, WT |
---|---|
Формат: | Conference item |
Мова: | English |
Опубліковано: |
IEEE
2024
|
Схожі ресурси
Схожі ресурси
-
Multi-task self-supervised visual learning
за авторством: Doersch, C, та інші
Опубліковано: (2017) -
Ambient Sound Provides Supervision for Visual Learning
за авторством: Owens, Andrew Hale, та інші
Опубліковано: (2017) -
Learning Sight from Sound: Ambient Sound Provides Supervision for Visual Learning
за авторством: Owens, Andrew, та інші
Опубліковано: (2021) -
Self-Supervised Learning for Audio-Visual Relationships of Videos With Stereo Sounds
за авторством: Tomoya Sato, та інші
Опубліковано: (2022-01-01) -
Self-supervised learning of audio-visual objects from video
за авторством: Afouras, T, та інші
Опубліковано: (2020)