A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses
A large number of historical simulations and future climate projections are available from Global Climate Models, but these are typically of coarse resolution, which limits their effectiveness for assessing local scale changes in climate and attendant impacts. Here, we use a novel statistical downsc...
Main Authors: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Springer Nature
2023
|
_version_ | 1797111258527301632 |
---|---|
author | Gebrechorkos, S Leyland, J Slater, L Wortmann, M Ashworth, PJ Bennett, GL Boothroyd, R Cloke, H Delorme, P Griffith, H Hardy, R Hawker, L McLelland, S Neal, J Nicholas, A Tatem, AJ Vahidi, E Parsons, DR Darby, SE |
author_facet | Gebrechorkos, S Leyland, J Slater, L Wortmann, M Ashworth, PJ Bennett, GL Boothroyd, R Cloke, H Delorme, P Griffith, H Hardy, R Hawker, L McLelland, S Neal, J Nicholas, A Tatem, AJ Vahidi, E Parsons, DR Darby, SE |
author_sort | Gebrechorkos, S |
collection | OXFORD |
description | A large number of historical simulations and future climate projections are available from Global Climate Models, but these are typically of coarse resolution, which limits their effectiveness for assessing local scale changes in climate and attendant impacts. Here, we use a novel statistical downscaling model capable of replicating extreme events, the Bias Correction Constructed Analogues with Quantile mapping reordering (BCCAQ), to downscale daily precipitation, air-temperature, maximum and minimum temperature, wind speed, air pressure, and relative humidity from 18 GCMs from the Coupled Model Intercomparison Project Phase 6 (CMIP6). BCCAQ is calibrated using high-resolution reference datasets and showed a good performance in removing bias from GCMs and reproducing extreme events. The globally downscaled data are available at the Centre for Environmental Data Analysis ( https://doi.org/10.5285/c107618f1db34801bb88a1e927b82317 ) for the historical (1981-2014) and future (2015-2100) periods at 0.25° resolution and at daily time step across three Shared Socioeconomic Pathways (SSP2-4.5, SSP5-3.4-OS and SSP5-8.5). This new climate dataset will be useful for assessing future changes and variability in climate and for driving high-resolution impact assessment models. |
first_indexed | 2024-03-07T08:06:12Z |
format | Journal article |
id | oxford-uuid:2e5615f4-a79f-413a-8494-770dc8552ee3 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T08:06:12Z |
publishDate | 2023 |
publisher | Springer Nature |
record_format | dspace |
spelling | oxford-uuid:2e5615f4-a79f-413a-8494-770dc8552ee32023-11-06T06:09:35ZA high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analysesJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:2e5615f4-a79f-413a-8494-770dc8552ee3EnglishSymplectic ElementsSpringer Nature2023Gebrechorkos, SLeyland, JSlater, LWortmann, MAshworth, PJBennett, GLBoothroyd, RCloke, HDelorme, PGriffith, HHardy, RHawker, LMcLelland, SNeal, JNicholas, ATatem, AJVahidi, EParsons, DRDarby, SEA large number of historical simulations and future climate projections are available from Global Climate Models, but these are typically of coarse resolution, which limits their effectiveness for assessing local scale changes in climate and attendant impacts. Here, we use a novel statistical downscaling model capable of replicating extreme events, the Bias Correction Constructed Analogues with Quantile mapping reordering (BCCAQ), to downscale daily precipitation, air-temperature, maximum and minimum temperature, wind speed, air pressure, and relative humidity from 18 GCMs from the Coupled Model Intercomparison Project Phase 6 (CMIP6). BCCAQ is calibrated using high-resolution reference datasets and showed a good performance in removing bias from GCMs and reproducing extreme events. The globally downscaled data are available at the Centre for Environmental Data Analysis ( https://doi.org/10.5285/c107618f1db34801bb88a1e927b82317 ) for the historical (1981-2014) and future (2015-2100) periods at 0.25° resolution and at daily time step across three Shared Socioeconomic Pathways (SSP2-4.5, SSP5-3.4-OS and SSP5-8.5). This new climate dataset will be useful for assessing future changes and variability in climate and for driving high-resolution impact assessment models. |
spellingShingle | Gebrechorkos, S Leyland, J Slater, L Wortmann, M Ashworth, PJ Bennett, GL Boothroyd, R Cloke, H Delorme, P Griffith, H Hardy, R Hawker, L McLelland, S Neal, J Nicholas, A Tatem, AJ Vahidi, E Parsons, DR Darby, SE A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses |
title | A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses |
title_full | A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses |
title_fullStr | A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses |
title_full_unstemmed | A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses |
title_short | A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses |
title_sort | high resolution daily global dataset of statistically downscaled cmip6 models for climate impact analyses |
work_keys_str_mv | AT gebrechorkoss ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT leylandj ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT slaterl ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT wortmannm ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT ashworthpj ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT bennettgl ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT boothroydr ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT clokeh ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT delormep ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT griffithh ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT hardyr ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT hawkerl ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT mclellands ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT nealj ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT nicholasa ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT tatemaj ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT vahidie ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT parsonsdr ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT darbyse ahighresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT gebrechorkoss highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT leylandj highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT slaterl highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT wortmannm highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT ashworthpj highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT bennettgl highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT boothroydr highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT clokeh highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT delormep highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT griffithh highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT hardyr highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT hawkerl highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT mclellands highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT nealj highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT nicholasa highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT tatemaj highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT vahidie highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT parsonsdr highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses AT darbyse highresolutiondailyglobaldatasetofstatisticallydownscaledcmip6modelsforclimateimpactanalyses |