Mathematical model of plant nutrient uptake

This thesis deals with the mathematical modelling of nutrient uptake by plant roots. It starts with the Nye-Tinker-Barber model for nutrient uptake by a single bare cylindrical root. The model is treated using matched asymptotic expansion and an analytic formula for the rate of nutrient uptake is de...

Full description

Bibliographic Details
Main Author: Roose, T
Format: Thesis
Published: University of Oxford 2000
_version_ 1826316762600177664
author Roose, T
author_facet Roose, T
author_sort Roose, T
collection OXFORD
description This thesis deals with the mathematical modelling of nutrient uptake by plant roots. It starts with the Nye-Tinker-Barber model for nutrient uptake by a single bare cylindrical root. The model is treated using matched asymptotic expansion and an analytic formula for the rate of nutrient uptake is derived for the first time. The basic model is then extended to include root hairs and mycorrhizae, which have been found experimentally to be very important for the uptake of immobile nutrients. Again, analytic expressions for nutrient uptake are derived. The simplicity and clarity of the analytical formulae for the solution of the single root models allows the extension of these models to more realistic branched roots. These models clearly show that the `volume averaging of branching structure' technique commonly used to extend the Nye-Tinker-Barber with experiments can lead to large errors. The same models also indicate that in the absence of large-scale water movement, due to rainfall, fertiliser fails to penetrate into the soil. This motivates us to build a model for water movement and uptake by branched root structures. This model considers the simultaneous flow of water in the soil, uptake by the roots, and flow within the root branching network to the stems of the plant. The water uptake model shows that the water saturation can develop pseudo-steady-state wet and dry zones in the rooting region of the soil. The dry zone is shown to stop the movement of nutrient from the top of the soil to the groundwater. Finally we present a model for the simultaneous movement and uptake of both nutrients and water. This is discussed as a new tool for interpreting available experimental results and designing future experiments. The parallels between evolution and mathematical optimisation are also discussed.
first_indexed 2024-03-07T08:24:20Z
format Thesis
id oxford-uuid:2e5d70e2-3182-4d3e-92d6-2c3dc0ac7751
institution University of Oxford
last_indexed 2025-02-19T04:27:59Z
publishDate 2000
publisher University of Oxford
record_format dspace
spelling oxford-uuid:2e5d70e2-3182-4d3e-92d6-2c3dc0ac77512024-12-13T10:47:02ZMathematical model of plant nutrient uptakeThesishttp://purl.org/coar/resource_type/c_db06uuid:2e5d70e2-3182-4d3e-92d6-2c3dc0ac7751Mathematical Institute - ePrintsUniversity of Oxford2000Roose, TThis thesis deals with the mathematical modelling of nutrient uptake by plant roots. It starts with the Nye-Tinker-Barber model for nutrient uptake by a single bare cylindrical root. The model is treated using matched asymptotic expansion and an analytic formula for the rate of nutrient uptake is derived for the first time. The basic model is then extended to include root hairs and mycorrhizae, which have been found experimentally to be very important for the uptake of immobile nutrients. Again, analytic expressions for nutrient uptake are derived. The simplicity and clarity of the analytical formulae for the solution of the single root models allows the extension of these models to more realistic branched roots. These models clearly show that the `volume averaging of branching structure' technique commonly used to extend the Nye-Tinker-Barber with experiments can lead to large errors. The same models also indicate that in the absence of large-scale water movement, due to rainfall, fertiliser fails to penetrate into the soil. This motivates us to build a model for water movement and uptake by branched root structures. This model considers the simultaneous flow of water in the soil, uptake by the roots, and flow within the root branching network to the stems of the plant. The water uptake model shows that the water saturation can develop pseudo-steady-state wet and dry zones in the rooting region of the soil. The dry zone is shown to stop the movement of nutrient from the top of the soil to the groundwater. Finally we present a model for the simultaneous movement and uptake of both nutrients and water. This is discussed as a new tool for interpreting available experimental results and designing future experiments. The parallels between evolution and mathematical optimisation are also discussed.
spellingShingle Roose, T
Mathematical model of plant nutrient uptake
title Mathematical model of plant nutrient uptake
title_full Mathematical model of plant nutrient uptake
title_fullStr Mathematical model of plant nutrient uptake
title_full_unstemmed Mathematical model of plant nutrient uptake
title_short Mathematical model of plant nutrient uptake
title_sort mathematical model of plant nutrient uptake
work_keys_str_mv AT rooset mathematicalmodelofplantnutrientuptake