Tractable uncertainty for structure learning
Bayesian structure learning allows one to capture uncertainty over the causal directed acyclic graph (DAG) responsible for generating given data. In this work, we present Tractable Uncertainty for STructure learning (TRUST), a framework for approximate posterior inference that relies on probabilisti...
المؤلفون الرئيسيون: | Wang, B, Wicker, M, Kwiatkowska, M |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
Journal of Machine Learning Research
2022
|
مواد مشابهة
-
Compositional probabilistic and causal inference using tractable circuit models
حسب: Wang, B, وآخرون
منشور في: (2023) -
Tractable triangles
حسب: Cooper, M, وآخرون
منشور في: (2011) -
Tractable probabilistic models for causal learning and reasoning
حسب: Wang, B
منشور في: (2023) -
The order encoding: From tractable CSP to tractable SAT
حسب: Petke, J, وآخرون
منشور في: (2011) -
The order encoding: from tractable CSP to tractable SAT
حسب: Petke, J, وآخرون
منشور في: (2011)