Sparse polynomial optimisation for neural network verification
The prevalence of neural networks in applications is expanding at an increasing rate. It is becoming clear that providing robust guarantees on systems that use neural networks is very important, especially in safety-critical applications. A trained neural network's sensitivity to adversarial at...
Autori principali: | Newton, M, Papachristodoulou, A |
---|---|
Natura: | Journal article |
Lingua: | English |
Pubblicazione: |
Elsevier
2023
|
Documenti analoghi
Documenti analoghi
-
Neural network verification using polynomial optimisation
di: Newton, M, et al.
Pubblicazione: (2022) -
Reachability analysis of neural feedback loops using sparse polynomial optimisation
di: Newton, M, et al.
Pubblicazione: (2022) -
Exploiting sparsity for neural network verification
di: Newton, M, et al.
Pubblicazione: (2021) -
Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials
di: Zheng, Y, et al.
Pubblicazione: (2019) -
Sparse hierarchical regression with polynomials
di: Bertsimas, Dimitris, et al.
Pubblicazione: (2021)