Higher-order inference in conditional random fields using submodular functions

Higher-order and dense conditional random fields (CRFs) are expressive graphical models which have been very successful in low-level computer vision applications such as semantic segmentation, and stereo matching. These models are able to capture long-range interactions and higher-order image statis...

Full description

Bibliographic Details
Main Author: Pansari, P
Other Authors: Mudigonda, P
Format: Thesis
Language:English
Published: 2023
Description
Summary:Higher-order and dense conditional random fields (CRFs) are expressive graphical models which have been very successful in low-level computer vision applications such as semantic segmentation, and stereo matching. These models are able to capture long-range interactions and higher-order image statistics much better than pairwise CRFs. This expressive power comes at a price though - inference problems in these models are computationally very demanding. This is a particular challenge in computer vision, where fast inference is important and the problem involves millions of pixels. In this thesis, we look at how submodular functions can help us designing efficient inference methods for higher-order and dense CRFs. Submodular functions are special discrete functions that have important properties from an optimisation perspective, and are closely related to convex functions. We use submodularity in a two-fold manner: (a) to design efficient MAP inference algorithm for a robust higher-order model that generalises the widely-used truncated convex models, and (b) to glean insights into a recently proposed variational inference algorithm which give us a principled approach for applying it efficiently to higher-order and dense CRFs.