Automatic acoustic mosquito tagging with Bayesian neural networks
Deep learning models are now widely used in decision-making applications. These models must be robust to noise and carefully map to the underlying uncertainty in the data. Standard deterministic neural networks are well known to be poor at providing reliable estimates of uncertainty and often lack t...
Autori principali: | Kiskin, I, Cobb, AD, Sinka, M, Willis, K, Roberts, SJ |
---|---|
Natura: | Conference item |
Lingua: | English |
Pubblicazione: |
Springer
2021
|
Documenti analoghi
-
Machine learning for acoustic mosquito detection
di: Kiskin, I
Pubblicazione: (2020) -
Bioacoustic detection with wavelet-conditioned convolutional neural networks
di: Kiskin, I, et al.
Pubblicazione: (2018) -
HumBug – an acoustic mosquito monitoring tool for use on budget smartphones
di: Sinka, ME, et al.
Pubblicazione: (2021) -
The practicalities of scaling Bayesian neural networks to real-world applications
di: Cobb, AD
Pubblicazione: (2020) -
HumBug – An Acoustic Mosquito Monitoring Tool for use on budget smartphones
di: Marianne E. Sinka, et al.
Pubblicazione: (2021-10-01)