Scintillating and optical spectroscopy of Al2O3 : Ti for dark matter searches

In order to optimize sapphire as a cryogenic scintillation-phonon detector for dark matter, Al2 O3 : Ti crystals with different concentrations of doping have been studied using continuous X-ray excitation in the 30-300 K temperature range. Light yields vary by 20% for Ti concentrations between 10 an...

Full description

Bibliographic Details
Main Authors: Luca, M, Coron, N, Dujardin, C, Kraus, H, Mikhailik, V, Verdier, M, Di Stefano, P
Format: Journal article
Language:English
Published: 2009
Description
Summary:In order to optimize sapphire as a cryogenic scintillation-phonon detector for dark matter, Al2 O3 : Ti crystals with different concentrations of doping have been studied using continuous X-ray excitation in the 30-300 K temperature range. Light yields vary by 20% for Ti concentrations between 10 and 1000 ppm at room temperature; they roughly double as the crystals are cooled from room temperature to 45 K. From the analysis of the change in the X-ray luminescence spectra of Al2 O3 with the concentration of Ti, it is concluded that the well-known blue emission of Ti-doped Al2 O3 is due to the radiative decay of F-centers. Recommendations are given for improving the performance of Al2 O3 scintillators. © 2009 Elsevier B.V. All rights reserved.