Torsion in the knot concordance group and cabling
We define a nontrivial modulo 2 valued additive concordance invariant defined on the torsion subgroup of the knot concordance group using involutive knot Floer package. For knots not contained in its kernel, we prove that their iterated (odd,1)-cables have infinite order in the concordance group and...
Päätekijät: | Kang, S, Park, J |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
EMS Press
2024
|
Samankaltaisia teoksia
-
Primary decomposition in the smooth concordance group of topologically slice knots
Tekijä: Jae Choon Cha
Julkaistu: (2021-01-01) -
Instantons and some concordance invariants of knots
Tekijä: Kronheimer, PB, et al.
Julkaistu: (2022) -
Concordance maps in knot Floer homology
Tekijä: Juhász, A, et al.
Julkaistu: (2016) -
Instantons and some concordance invariants of knots
Tekijä: Kronheimer, PB, et al.
Julkaistu: (2021) -
Doubly slice knots and obstruction to Lagrangian concordance
Tekijä: Chantraine, Baptiste, et al.
Julkaistu: (2023-11-01)