Torsion in the knot concordance group and cabling
We define a nontrivial modulo 2 valued additive concordance invariant defined on the torsion subgroup of the knot concordance group using involutive knot Floer package. For knots not contained in its kernel, we prove that their iterated (odd,1)-cables have infinite order in the concordance group and...
Auteurs principaux: | Kang, S, Park, J |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
EMS Press
2024
|
Documents similaires
-
Primary decomposition in the smooth concordance group of topologically slice knots
par: Jae Choon Cha
Publié: (2021-01-01) -
Instantons and some concordance invariants of knots
par: Kronheimer, PB, et autres
Publié: (2022) -
Concordance maps in knot Floer homology
par: Juhász, A, et autres
Publié: (2016) -
Instantons and some concordance invariants of knots
par: Kronheimer, PB, et autres
Publié: (2021) -
Doubly slice knots and obstruction to Lagrangian concordance
par: Chantraine, Baptiste, et autres
Publié: (2023-11-01)