Torsion in the knot concordance group and cabling
We define a nontrivial modulo 2 valued additive concordance invariant defined on the torsion subgroup of the knot concordance group using involutive knot Floer package. For knots not contained in its kernel, we prove that their iterated (odd,1)-cables have infinite order in the concordance group and...
Главные авторы: | Kang, S, Park, J |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
EMS Press
2024
|
Схожие документы
-
Primary decomposition in the smooth concordance group of topologically slice knots
по: Jae Choon Cha
Опубликовано: (2021-01-01) -
Instantons and some concordance invariants of knots
по: Kronheimer, PB, и др.
Опубликовано: (2022) -
Concordance maps in knot Floer homology
по: Juhász, A, и др.
Опубликовано: (2016) -
Instantons and some concordance invariants of knots
по: Kronheimer, PB, и др.
Опубликовано: (2021) -
Doubly slice knots and obstruction to Lagrangian concordance
по: Chantraine, Baptiste, и др.
Опубликовано: (2023-11-01)