Torsion in the knot concordance group and cabling
We define a nontrivial modulo 2 valued additive concordance invariant defined on the torsion subgroup of the knot concordance group using involutive knot Floer package. For knots not contained in its kernel, we prove that their iterated (odd,1)-cables have infinite order in the concordance group and...
Váldodahkkit: | Kang, S, Park, J |
---|---|
Materiálatiipa: | Journal article |
Giella: | English |
Almmustuhtton: |
EMS Press
2024
|
Geahča maid
-
Primary decomposition in the smooth concordance group of topologically slice knots
Dahkki: Jae Choon Cha
Almmustuhtton: (2021-01-01) -
Instantons and some concordance invariants of knots
Dahkki: Kronheimer, PB, et al.
Almmustuhtton: (2022) -
Concordance maps in knot Floer homology
Dahkki: Juhász, A, et al.
Almmustuhtton: (2016) -
Instantons and some concordance invariants of knots
Dahkki: Kronheimer, PB, et al.
Almmustuhtton: (2021) -
Doubly slice knots and obstruction to Lagrangian concordance
Dahkki: Chantraine, Baptiste, et al.
Almmustuhtton: (2023-11-01)