Simple and scalable constrained clustering: a generalized spectral method

We present a simple spectral approach to the well-studied constrained clustering problem. It captures constrained clustering as a generalized eigenvalue problem with graph Laplacians. The algorithm works in nearly-linear time and provides concrete guarantees for the quality of the clusters, at least...

Cijeli opis

Bibliografski detalji
Glavni autor: Cucuringu, M
Format: Conference item
Izdano: Microtome Publishing 2016
Opis
Sažetak:We present a simple spectral approach to the well-studied constrained clustering problem. It captures constrained clustering as a generalized eigenvalue problem with graph Laplacians. The algorithm works in nearly-linear time and provides concrete guarantees for the quality of the clusters, at least for the case of 2-way partitioning. In practice this translates to a very fast implementation that consistently outperforms existing spectral approaches both in speed and quality.