Structural techniques in descriptive complexity

In 2017, Abramsky, Dawar, and Wang published a paper which gave a comonadic characterisation of pebble games, tree-width, and k-variable logic, a key trio of related concepts in Finite Model Theory. In 2018, Abramsky and Shah expanded upon this to give an analogous comonadic characterisation of Ehre...

Full description

Bibliographic Details
Main Author: Paine, T
Other Authors: Abramsky, S
Format: Thesis
Language:English
Published: 2022
Subjects:
Description
Summary:In 2017, Abramsky, Dawar, and Wang published a paper which gave a comonadic characterisation of pebble games, tree-width, and k-variable logic, a key trio of related concepts in Finite Model Theory. In 2018, Abramsky and Shah expanded upon this to give an analogous comonadic characterisation of Ehrenfeucht Fraisse games, tree-depth, and bounded quantifier rank logic. A key feature of these papers is the connection between two previously distinct subfields of logic in computer science; Categorical Semantics, and Finite Model Theory. This thesis applies the ideas and techniques in these papers to give a categorical account of some cornerstone results of Finite Model Theory, including Rossman’s Equirank Homomorphism Preservation Theorem, Courcelle’s Theorem (on the model-checking properties of structures of bounded tree-width), and Gaifman’s Locality Theorem.