Defining therapeutic targets by using adenovirus: blocking NF-kappaB inhibits both inflammatory and destructive mechanisms in rheumatoid synovium but spares anti-inflammatory mediators.

The role of the transcription factor NF-kappaB in the pathogenesis of rheumatoid arthritis has long been a subject of controversy. We used an adenoviral technique of blocking NF-kappaB through overexpression of the inhibitory subunit IkappaBalpha, which has the advantage that it can be used in the d...

Mô tả đầy đủ

Chi tiết về thư mục
Những tác giả chính: Bondeson, J, Foxwell, B, Brennan, F, Feldmann, M
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: 1999
Miêu tả
Tóm tắt:The role of the transcription factor NF-kappaB in the pathogenesis of rheumatoid arthritis has long been a subject of controversy. We used an adenoviral technique of blocking NF-kappaB through overexpression of the inhibitory subunit IkappaBalpha, which has the advantage that it can be used in the diseased tissue itself, with >90% of the synovial macrophages, fibroblasts, and T cells infected. We found that the spontaneous production of tumor necrosis factor alpha and other pro-inflammatory cytokines is NF-kappaB-dependent in rheumatoid synovial tissue, in contrast to the main anti-inflammatory mediators, like IL-10 and -11, and the IL-1 receptor antagonist. Of even more interest, IkappaBalpha overexpression inhibited the production of matrix metalloproteinases 1 and 3 while not affecting their tissue inhibitor. Blocking NF-kappaB in the rheumatoid joint thus has a very beneficial profile, reducing both the inflammatory response and the tissue destruction. The adenoviral technique described here has widespread applicability, allowing rapid testing of the effects of blocking a potential therapeutic target in either cultures of normal cells or in the diseased tissue itself.