Quantitative CLTs on the Poisson space via Skorohod estimates and p-Poincaré inequalities
We establish new explicit bounds on the Gaussian approximation of Poisson functionals based on novel estimates of moments of Skorohod integrals. Combining these with the Malliavin–Stein method, we derive bounds in the Wasserstein and Kolmogorov distances whose application requires minimal moment ass...
المؤلف الرئيسي: | Trauthwein, T |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
Institute of Mathematical Statistics
2025
|
مواد مشابهة
-
Second order Poincaré inequalities and CLTs on Wiener space
حسب: Nourdin, I, وآخرون
منشور في: (2008) -
Stein approximation for Ito and Skorohod integrals by Edgeworth type expansions
حسب: Privault, Nicolas
منشور في: (2015) -
Poincaré-type inequalities for broken Sobolev spaces
حسب: Lasis, A, وآخرون
منشور في: (2003) -
Discrete Euler-Poincaré and Lie-Poisson Equations
حسب: Marsden, J, وآخرون
منشور في: (1999) -
Skorohod-Olevsky viscous sintering model sensitivity to temperature distribution during the sintering process
حسب: Petrović Veljko M., وآخرون
منشور في: (2021-01-01)