Quantitative CLTs on the Poisson space via Skorohod estimates and p-Poincaré inequalities
We establish new explicit bounds on the Gaussian approximation of Poisson functionals based on novel estimates of moments of Skorohod integrals. Combining these with the Malliavin–Stein method, we derive bounds in the Wasserstein and Kolmogorov distances whose application requires minimal moment ass...
מחבר ראשי: | Trauthwein, T |
---|---|
פורמט: | Journal article |
שפה: | English |
יצא לאור: |
Institute of Mathematical Statistics
2025
|
פריטים דומים
-
Second order Poincaré inequalities and CLTs on Wiener space
מאת: Nourdin, I, et al.
יצא לאור: (2008) -
Stein approximation for Ito and Skorohod integrals by Edgeworth type expansions
מאת: Privault, Nicolas
יצא לאור: (2015) -
Poincaré-type inequalities for broken Sobolev spaces
מאת: Lasis, A, et al.
יצא לאור: (2003) -
Discrete Euler-Poincaré and Lie-Poisson Equations
מאת: Marsden, J, et al.
יצא לאור: (1999) -
Skorohod-Olevsky viscous sintering model sensitivity to temperature distribution during the sintering process
מאת: Petrović Veljko M., et al.
יצא לאור: (2021-01-01)