Quantitative CLTs on the Poisson space via Skorohod estimates and p-Poincaré inequalities
We establish new explicit bounds on the Gaussian approximation of Poisson functionals based on novel estimates of moments of Skorohod integrals. Combining these with the Malliavin–Stein method, we derive bounds in the Wasserstein and Kolmogorov distances whose application requires minimal moment ass...
第一著者: | Trauthwein, T |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Institute of Mathematical Statistics
2025
|
類似資料
-
Second order Poincaré inequalities and CLTs on Wiener space
著者:: Nourdin, I, 等
出版事項: (2008) -
Stein approximation for Ito and Skorohod integrals by Edgeworth type expansions
著者:: Privault, Nicolas
出版事項: (2015) -
Poincaré-type inequalities for broken Sobolev spaces
著者:: Lasis, A, 等
出版事項: (2003) -
Discrete Euler-Poincaré and Lie-Poisson Equations
著者:: Marsden, J, 等
出版事項: (1999) -
Skorohod-Olevsky viscous sintering model sensitivity to temperature distribution during the sintering process
著者:: Petrović Veljko M., 等
出版事項: (2021-01-01)