Quantitative CLTs on the Poisson space via Skorohod estimates and p-Poincaré inequalities
We establish new explicit bounds on the Gaussian approximation of Poisson functionals based on novel estimates of moments of Skorohod integrals. Combining these with the Malliavin–Stein method, we derive bounds in the Wasserstein and Kolmogorov distances whose application requires minimal moment ass...
Autor principal: | Trauthwein, T |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
Institute of Mathematical Statistics
2025
|
Registos relacionados
-
Second order Poincaré inequalities and CLTs on Wiener space
Por: Nourdin, I, et al.
Publicado em: (2008) -
Stein approximation for Ito and Skorohod integrals by Edgeworth type expansions
Por: Privault, Nicolas
Publicado em: (2015) -
Poincaré-type inequalities for broken Sobolev spaces
Por: Lasis, A, et al.
Publicado em: (2003) -
Discrete Euler-Poincaré and Lie-Poisson Equations
Por: Marsden, J, et al.
Publicado em: (1999) -
Skorohod-Olevsky viscous sintering model sensitivity to temperature distribution during the sintering process
Por: Petrović Veljko M., et al.
Publicado em: (2021-01-01)