Quantitative CLTs on the Poisson space via Skorohod estimates and p-Poincaré inequalities
We establish new explicit bounds on the Gaussian approximation of Poisson functionals based on novel estimates of moments of Skorohod integrals. Combining these with the Malliavin–Stein method, we derive bounds in the Wasserstein and Kolmogorov distances whose application requires minimal moment ass...
Главный автор: | Trauthwein, T |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Institute of Mathematical Statistics
2025
|
Схожие документы
-
Second order Poincaré inequalities and CLTs on Wiener space
по: Nourdin, I, и др.
Опубликовано: (2008) -
Stein approximation for Ito and Skorohod integrals by Edgeworth type expansions
по: Privault, Nicolas
Опубликовано: (2015) -
Poincaré-type inequalities for broken Sobolev spaces
по: Lasis, A, и др.
Опубликовано: (2003) -
Discrete Euler-Poincaré and Lie-Poisson Equations
по: Marsden, J, и др.
Опубликовано: (1999) -
Skorohod-Olevsky viscous sintering model sensitivity to temperature distribution during the sintering process
по: Petrović Veljko M., и др.
Опубликовано: (2021-01-01)