Quantitative CLTs on the Poisson space via Skorohod estimates and p-Poincaré inequalities
We establish new explicit bounds on the Gaussian approximation of Poisson functionals based on novel estimates of moments of Skorohod integrals. Combining these with the Malliavin–Stein method, we derive bounds in the Wasserstein and Kolmogorov distances whose application requires minimal moment ass...
Glavni avtor: | Trauthwein, T |
---|---|
Format: | Journal article |
Jezik: | English |
Izdano: |
Institute of Mathematical Statistics
2025
|
Podobne knjige/članki
-
Second order Poincaré inequalities and CLTs on Wiener space
od: Nourdin, I, et al.
Izdano: (2008) -
Stein approximation for Ito and Skorohod integrals by Edgeworth type expansions
od: Privault, Nicolas
Izdano: (2015) -
Poincaré-type inequalities for broken Sobolev spaces
od: Lasis, A, et al.
Izdano: (2003) -
Discrete Euler-Poincaré and Lie-Poisson Equations
od: Marsden, J, et al.
Izdano: (1999) -
Skorohod-Olevsky viscous sintering model sensitivity to temperature distribution during the sintering process
od: Petrović Veljko M., et al.
Izdano: (2021-01-01)