Quantitative CLTs on the Poisson space via Skorohod estimates and p-Poincaré inequalities
We establish new explicit bounds on the Gaussian approximation of Poisson functionals based on novel estimates of moments of Skorohod integrals. Combining these with the Malliavin–Stein method, we derive bounds in the Wasserstein and Kolmogorov distances whose application requires minimal moment ass...
Huvudupphovsman: | Trauthwein, T |
---|---|
Materialtyp: | Journal article |
Språk: | English |
Publicerad: |
Institute of Mathematical Statistics
2025
|
Liknande verk
Liknande verk
-
Second order Poincaré inequalities and CLTs on Wiener space
av: Nourdin, I, et al.
Publicerad: (2008) -
Stein approximation for Ito and Skorohod integrals by Edgeworth type expansions
av: Privault, Nicolas
Publicerad: (2015) -
Poincaré-type inequalities for broken Sobolev spaces
av: Lasis, A, et al.
Publicerad: (2003) -
Discrete Euler-Poincaré and Lie-Poisson Equations
av: Marsden, J, et al.
Publicerad: (1999) -
Skorohod-Olevsky viscous sintering model sensitivity to temperature distribution during the sintering process
av: Petrović Veljko M., et al.
Publicerad: (2021-01-01)