Quantitative CLTs on the Poisson space via Skorohod estimates and p-Poincaré inequalities
We establish new explicit bounds on the Gaussian approximation of Poisson functionals based on novel estimates of moments of Skorohod integrals. Combining these with the Malliavin–Stein method, we derive bounds in the Wasserstein and Kolmogorov distances whose application requires minimal moment ass...
主要作者: | Trauthwein, T |
---|---|
格式: | Journal article |
語言: | English |
出版: |
Institute of Mathematical Statistics
2025
|
相似書籍
-
Second order Poincaré inequalities and CLTs on Wiener space
由: Nourdin, I, et al.
出版: (2008) -
Stein approximation for Ito and Skorohod integrals by Edgeworth type expansions
由: Privault, Nicolas
出版: (2015) -
Poincaré-type inequalities for broken Sobolev spaces
由: Lasis, A, et al.
出版: (2003) -
Discrete Euler-Poincaré and Lie-Poisson Equations
由: Marsden, J, et al.
出版: (1999) -
Skorohod-Olevsky viscous sintering model sensitivity to temperature distribution during the sintering process
由: Petrović Veljko M., et al.
出版: (2021-01-01)