Inference on Markov random fields: methods and applications
<p>This thesis considers the problem of performing inference on undirected graphical models with continuous state spaces. These models represent conditional independence structures that can appear in the context of Bayesian Machine Learning. In the thesis, we focus on computational methods and...
Hlavní autor: | Lienart, T |
---|---|
Další autoři: | Doucet, A |
Médium: | Diplomová práce |
Jazyk: | English |
Vydáno: |
2017
|
Témata: |
Podobné jednotky
-
Neural networks for inference, inference for neural networks
Autor: Webb, S
Vydáno: (2018) -
Piecewise-deterministic Markov chain Monte Carlo
Autor: Vanetti, P
Vydáno: (2019) -
Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions
Autor: Samuel Livingstone, a další
Vydáno: (2014-06-01) -
Bayesian inference with geodetic applications /
Autor: 253571 Koch, Karl-Rudolf, a další
Vydáno: (1990) -
The predictive view of Bayesian inference
Autor: Fong, CHE
Vydáno: (2021)