Inference on Markov random fields: methods and applications
<p>This thesis considers the problem of performing inference on undirected graphical models with continuous state spaces. These models represent conditional independence structures that can appear in the context of Bayesian Machine Learning. In the thesis, we focus on computational methods and...
Autor principal: | Lienart, T |
---|---|
Outros Autores: | Doucet, A |
Formato: | Tese |
Idioma: | English |
Publicado em: |
2017
|
Assuntos: |
Registros relacionados
-
Neural networks for inference, inference for neural networks
por: Webb, S
Publicado em: (2018) -
Piecewise-deterministic Markov chain Monte Carlo
por: Vanetti, P
Publicado em: (2019) -
Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions
por: Samuel Livingstone, et al.
Publicado em: (2014-06-01) -
Bayesian inference with geodetic applications /
por: 253571 Koch, Karl-Rudolf, et al.
Publicado em: (1990) -
The predictive view of Bayesian inference
por: Fong, CHE
Publicado em: (2021)