Inference on Markov random fields: methods and applications
<p>This thesis considers the problem of performing inference on undirected graphical models with continuous state spaces. These models represent conditional independence structures that can appear in the context of Bayesian Machine Learning. In the thesis, we focus on computational methods and...
主要作者: | Lienart, T |
---|---|
其他作者: | Doucet, A |
格式: | Thesis |
语言: | English |
出版: |
2017
|
主题: |
相似书籍
-
Neural networks for inference, inference for neural networks
由: Webb, S
出版: (2018) -
Piecewise-deterministic Markov chain Monte Carlo
由: Vanetti, P
出版: (2019) -
Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions
由: Samuel Livingstone, et al.
出版: (2014-06-01) -
Bayesian inference with geodetic applications /
由: 253571 Koch, Karl-Rudolf, et al.
出版: (1990) -
The predictive view of Bayesian inference
由: Fong, CHE
出版: (2021)