Finiteness properties for subgroups of GL(n, Z)
We construct finitely presented subgroups of GL(n, ℤ) that have infinitely many conjugacy classes of finite subgroups. This answers a question of Grunewald and Platonov. We suggest a variation on their question.
Auteur principal: | Bridson, M |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
2000
|
Documents similaires
-
Minimal irreducible solvable subgroups of the group GL(q,{Z}_{p})
par: О. А. Кирилюк
Publié: (2018-06-01) -
On maximal finite irreducible subgroups of GL (n,Z) V The eight dimensional case and a complete description of dimensions less than ten [mikrofis]
par: 345332 Plesken, Wilhelm -
A note on approximate subgroups of GL_n(C) and uniformly nonamenable
groups
par: Breuillard, E, et autres
Publié: (2011) -
Finitely presented subgroups of automatic groups and their isoperimetric functions
par: Baumslag, G, et autres
Publié: (1997) -
The Drinfeld stratification for $${{\,\mathrm{GL}\,}}_n$$ GL n
par: Chan, Charlotte, et autres
Publié: (2021)