Improving weather forecast skill through reduced precision data assimilation
A new approach for improving the accuracy of data assimilation, by trading numerical precision for ensemble size, is introduced. Data assimilation is inherently uncertain due to the use of noisy observations and imperfect models. Thus, the larger rounding errors incurred from reducing precision may...
主要な著者: | Hatfield, S, Subramanian, A, Palmer, T, Düben, P |
---|---|
フォーマット: | Journal article |
出版事項: |
American Meteorological Society
2017
|
類似資料
-
Reduced-precision arithmetic in numerical weather prediction with an emphasis on data assimilation
著者:: Hatfield, S
出版事項: (2019) -
Choosing the optimal numerical precision for data assimilation in the presence of model error
著者:: Hatfield, SE, 等
出版事項: (2018) -
Scale-selective precision for weather and climate forecasting
著者:: Chantry, M, 等
出版事項: (2019) -
Single precision in weather forecasting models: An evaluation with the IFS
著者:: Váňa, F, 等
出版事項: (2017) -
Reduced-precision parametrization: lessons from an intermediate-complexity atmospheric model
著者:: Saffin, L, 等
出版事項: (2020)