Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit.

Hypoxia-inducible factor-1 (HIF-1), a heterodimeric DNA binding complex composed of two basic-helix-loop-helix Per-AHR-ARNT-Sim proteins (HIF-1alpha and -1beta), is a key component of a widely operative transcriptional response activated by hypoxia, cobaltous ions, and iron chelation. To identify re...

Descrición completa

Detalles Bibliográficos
Main Authors: Pugh, C, O'Rourke, J, Nagao, M, Gleadle, J, Ratcliffe, P
Formato: Journal article
Idioma:English
Publicado: 1997
_version_ 1826265880050270208
author Pugh, C
O'Rourke, J
Nagao, M
Gleadle, J
Ratcliffe, P
author_facet Pugh, C
O'Rourke, J
Nagao, M
Gleadle, J
Ratcliffe, P
author_sort Pugh, C
collection OXFORD
description Hypoxia-inducible factor-1 (HIF-1), a heterodimeric DNA binding complex composed of two basic-helix-loop-helix Per-AHR-ARNT-Sim proteins (HIF-1alpha and -1beta), is a key component of a widely operative transcriptional response activated by hypoxia, cobaltous ions, and iron chelation. To identify regions of HIF-1 subunits responsible for oxygen-regulated activity, we constructed chimeric genes in which portions of coding sequence from HIF-1 genes were either linked to a heterologous DNA binding domain or encoded between such a DNA binding domain and a constitutive activation domain. Sequences from HIF-1alpha but not HIF-1beta conferred oxygen-regulated activity. Two minimal domains within HIF-1alpha (amino acids 549-582 and amino acids 775-826) were defined by deletional analysis, each of which could act independently to convey inducible responses. Both these regions confer transcriptional activation, and in both cases adjacent sequences appeared functionally repressive in transactivation assays. The inducible operation of the first domain, but not the second, involved major changes in the level of the activator fusion protein in transfected cells, inclusion of this sequence being associated with a marked reduction of expressed protein level in normoxic cells, which was relieved by stimulation with hypoxia, cobaltous ions, or iron chelation. These results lead us to propose a dual mechanism of activation in which the operation of an inducible activation domain is amplified by regulation of transcription factor abundance, most likely occurring through changes in protein stability.
first_indexed 2024-03-06T20:30:32Z
format Journal article
id oxford-uuid:30e17c01-ad41-4368-a86d-13e01b5bf7c7
institution University of Oxford
language English
last_indexed 2024-03-06T20:30:32Z
publishDate 1997
record_format dspace
spelling oxford-uuid:30e17c01-ad41-4368-a86d-13e01b5bf7c72022-03-26T13:04:21ZActivation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:30e17c01-ad41-4368-a86d-13e01b5bf7c7EnglishSymplectic Elements at Oxford1997Pugh, CO'Rourke, JNagao, MGleadle, JRatcliffe, PHypoxia-inducible factor-1 (HIF-1), a heterodimeric DNA binding complex composed of two basic-helix-loop-helix Per-AHR-ARNT-Sim proteins (HIF-1alpha and -1beta), is a key component of a widely operative transcriptional response activated by hypoxia, cobaltous ions, and iron chelation. To identify regions of HIF-1 subunits responsible for oxygen-regulated activity, we constructed chimeric genes in which portions of coding sequence from HIF-1 genes were either linked to a heterologous DNA binding domain or encoded between such a DNA binding domain and a constitutive activation domain. Sequences from HIF-1alpha but not HIF-1beta conferred oxygen-regulated activity. Two minimal domains within HIF-1alpha (amino acids 549-582 and amino acids 775-826) were defined by deletional analysis, each of which could act independently to convey inducible responses. Both these regions confer transcriptional activation, and in both cases adjacent sequences appeared functionally repressive in transactivation assays. The inducible operation of the first domain, but not the second, involved major changes in the level of the activator fusion protein in transfected cells, inclusion of this sequence being associated with a marked reduction of expressed protein level in normoxic cells, which was relieved by stimulation with hypoxia, cobaltous ions, or iron chelation. These results lead us to propose a dual mechanism of activation in which the operation of an inducible activation domain is amplified by regulation of transcription factor abundance, most likely occurring through changes in protein stability.
spellingShingle Pugh, C
O'Rourke, J
Nagao, M
Gleadle, J
Ratcliffe, P
Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit.
title Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit.
title_full Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit.
title_fullStr Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit.
title_full_unstemmed Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit.
title_short Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit.
title_sort activation of hypoxia inducible factor 1 definition of regulatory domains within the alpha subunit
work_keys_str_mv AT pughc activationofhypoxiainduciblefactor1definitionofregulatorydomainswithinthealphasubunit
AT orourkej activationofhypoxiainduciblefactor1definitionofregulatorydomainswithinthealphasubunit
AT nagaom activationofhypoxiainduciblefactor1definitionofregulatorydomainswithinthealphasubunit
AT gleadlej activationofhypoxiainduciblefactor1definitionofregulatorydomainswithinthealphasubunit
AT ratcliffep activationofhypoxiainduciblefactor1definitionofregulatorydomainswithinthealphasubunit