A K-means multivariate approach for clustering independent components from magnetoencephalographic data.
Independent component analysis (ICA) is typically applied on functional magnetic resonance imaging, electroencephalographic and magnetoencephalographic (MEG) data due to its data-driven nature. In these applications, ICA needs to be extended from single to multi-session and multi-subject studies for...
Main Authors: | Spadone, S, de Pasquale, F, Mantini, D, Della Penna, S |
---|---|
Format: | Journal article |
Jezik: | English |
Izdano: |
2012
|
Podobne knjige/članki
-
Magnetoencephalographic study on facial movements
od: Kensaku eMiki, et al.
Izdano: (2014-07-01) -
Outlier Detection Based on Multivariable Panel Data and K-Means Clustering for Dam Deformation Monitoring Data
od: Jintao Song, et al.
Izdano: (2021-01-01) -
Magnetoencephalographic investigations of morphological identity and irregularity
od: Stockall, Linnaea C., 1975-
Izdano: (2009) -
The magnetoencephalographic signature of catechol-O-methyltransferase
od: Farrell, SM
Izdano: (2013) -
Cerebral mechanisms of language: magnetoencephalographic studies
od: Papanicolaou Andrew
Izdano: (2006-02-01)