A K-means multivariate approach for clustering independent components from magnetoencephalographic data.
Independent component analysis (ICA) is typically applied on functional magnetic resonance imaging, electroencephalographic and magnetoencephalographic (MEG) data due to its data-driven nature. In these applications, ICA needs to be extended from single to multi-session and multi-subject studies for...
Hlavní autoři: | Spadone, S, de Pasquale, F, Mantini, D, Della Penna, S |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
2012
|
Podobné jednotky
-
Magnetoencephalographic study on facial movements
Autor: Kensaku eMiki, a další
Vydáno: (2014-07-01) -
Outlier Detection Based on Multivariable Panel Data and K-Means Clustering for Dam Deformation Monitoring Data
Autor: Jintao Song, a další
Vydáno: (2021-01-01) -
Magnetoencephalographic investigations of morphological identity and irregularity
Autor: Stockall, Linnaea C., 1975-
Vydáno: (2009) -
The magnetoencephalographic signature of catechol-O-methyltransferase
Autor: Farrell, SM
Vydáno: (2013) -
Cerebral mechanisms of language: magnetoencephalographic studies
Autor: Papanicolaou Andrew
Vydáno: (2006-02-01)