A K-means multivariate approach for clustering independent components from magnetoencephalographic data.
Independent component analysis (ICA) is typically applied on functional magnetic resonance imaging, electroencephalographic and magnetoencephalographic (MEG) data due to its data-driven nature. In these applications, ICA needs to be extended from single to multi-session and multi-subject studies for...
Үндсэн зохиолчид: | Spadone, S, de Pasquale, F, Mantini, D, Della Penna, S |
---|---|
Формат: | Journal article |
Хэл сонгох: | English |
Хэвлэсэн: |
2012
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Magnetoencephalographic study on facial movements
-н: Kensaku eMiki, зэрэг
Хэвлэсэн: (2014-07-01) -
Outlier Detection Based on Multivariable Panel Data and K-Means Clustering for Dam Deformation Monitoring Data
-н: Jintao Song, зэрэг
Хэвлэсэн: (2021-01-01) -
Magnetoencephalographic investigations of morphological identity and irregularity
-н: Stockall, Linnaea C., 1975-
Хэвлэсэн: (2009) -
The magnetoencephalographic signature of catechol-O-methyltransferase
-н: Farrell, SM
Хэвлэсэн: (2013) -
Cerebral mechanisms of language: magnetoencephalographic studies
-н: Papanicolaou Andrew
Хэвлэсэн: (2006-02-01)