Bounding the escape time of a linear dynamical system over a compact semialgebraic set

We study the Escape Problem for discrete-time linear dynamical systems over compact semialgebraic sets. We establish a uniform upper bound on the number of iterations it takes for every orbit of a rational matrix to escape a compact semialgebraic set defined over rational data. Our bound is doubly e...

Szczegółowa specyfikacja

Opis bibliograficzny
Główni autorzy: D'Costa, J, Lefaucheux, E, Neumann, E, Ouaknine, J, Worrell, J
Format: Conference item
Język:English
Wydane: Schloss Dagstuhl – Leibniz-Zentrum für Informatik 2022
Hasła przedmiotowe:
_version_ 1826310887700430848
author D'Costa, J
Lefaucheux, E
Neumann, E
Ouaknine, J
Worrell, J
author_facet D'Costa, J
Lefaucheux, E
Neumann, E
Ouaknine, J
Worrell, J
author_sort D'Costa, J
collection OXFORD
description We study the Escape Problem for discrete-time linear dynamical systems over compact semialgebraic sets. We establish a uniform upper bound on the number of iterations it takes for every orbit of a rational matrix to escape a compact semialgebraic set defined over rational data. Our bound is doubly exponential in the ambient dimension, singly exponential in the degrees of the polynomials used to define the semialgebraic set, and singly exponential in the bitsize of the coefficients of these polynomials and the bitsize of the matrix entries. We show that our bound is tight by providing a matching lower bound.
first_indexed 2024-03-07T08:00:08Z
format Conference item
id oxford-uuid:31269d8e-a11a-4e39-aef9-793845f40b0f
institution University of Oxford
language English
last_indexed 2024-03-07T08:00:08Z
publishDate 2022
publisher Schloss Dagstuhl – Leibniz-Zentrum für Informatik
record_format dspace
spelling oxford-uuid:31269d8e-a11a-4e39-aef9-793845f40b0f2023-09-26T17:02:31ZBounding the escape time of a linear dynamical system over a compact semialgebraic setConference itemhttp://purl.org/coar/resource_type/c_5794uuid:31269d8e-a11a-4e39-aef9-793845f40b0fLogic and verificationTheory of computationEnglishSymplectic Elements Schloss Dagstuhl – Leibniz-Zentrum für Informatik2022D'Costa, JLefaucheux, ENeumann, EOuaknine, JWorrell, JWe study the Escape Problem for discrete-time linear dynamical systems over compact semialgebraic sets. We establish a uniform upper bound on the number of iterations it takes for every orbit of a rational matrix to escape a compact semialgebraic set defined over rational data. Our bound is doubly exponential in the ambient dimension, singly exponential in the degrees of the polynomials used to define the semialgebraic set, and singly exponential in the bitsize of the coefficients of these polynomials and the bitsize of the matrix entries. We show that our bound is tight by providing a matching lower bound.
spellingShingle Logic and verification
Theory of computation
D'Costa, J
Lefaucheux, E
Neumann, E
Ouaknine, J
Worrell, J
Bounding the escape time of a linear dynamical system over a compact semialgebraic set
title Bounding the escape time of a linear dynamical system over a compact semialgebraic set
title_full Bounding the escape time of a linear dynamical system over a compact semialgebraic set
title_fullStr Bounding the escape time of a linear dynamical system over a compact semialgebraic set
title_full_unstemmed Bounding the escape time of a linear dynamical system over a compact semialgebraic set
title_short Bounding the escape time of a linear dynamical system over a compact semialgebraic set
title_sort bounding the escape time of a linear dynamical system over a compact semialgebraic set
topic Logic and verification
Theory of computation
work_keys_str_mv AT dcostaj boundingtheescapetimeofalineardynamicalsystemoveracompactsemialgebraicset
AT lefaucheuxe boundingtheescapetimeofalineardynamicalsystemoveracompactsemialgebraicset
AT neumanne boundingtheescapetimeofalineardynamicalsystemoveracompactsemialgebraicset
AT ouakninej boundingtheescapetimeofalineardynamicalsystemoveracompactsemialgebraicset
AT worrellj boundingtheescapetimeofalineardynamicalsystemoveracompactsemialgebraicset