Bounding the escape time of a linear dynamical system over a compact semialgebraic set
We study the Escape Problem for discrete-time linear dynamical systems over compact semialgebraic sets. We establish a uniform upper bound on the number of iterations it takes for every orbit of a rational matrix to escape a compact semialgebraic set defined over rational data. Our bound is doubly e...
主要な著者: | D'Costa, J, Lefaucheux, E, Neumann, E, Ouaknine, J, Worrell, J |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
2022
|
主題: |
類似資料
-
On the complexity of the Escape Problem for linear dynamical systems over compact semialgebraic sets
著者:: D'Costa, J, 等
出版事項: (2021) -
Reachability and escape problems in linear dynamical systems
著者:: Dcosta, J
出版事項: (2024) -
How fast can you escape a compact polytope?
著者:: D'Costa, J, 等
出版事項: (2020) -
The Semialgebraic Orbit Problem
著者:: Almagor, S, 等
出版事項: (2019) -
Parameter synthesis for parametric probabilistic dynamical systems and prefix-independent specifications
著者:: Baier, C, 等
出版事項: (2022)