Home Page

In this paper, we extend our previous template analysis of a self-exciting Faraday disc dynamo with a linear series motor to the case of a nonlinear series motor. This introduces two additional nonlinear symmetry-breaking terms into the governing dynamo equations. We investigate the consequences for...

תיאור מלא

מידע ביבליוגרפי
מחבר ראשי: Moroz, I
פורמט: Journal article
יצא לאור: 2012
_version_ 1826265995859197952
author Moroz, I
author_facet Moroz, I
author_sort Moroz, I
collection OXFORD
description In this paper, we extend our previous template analysis of a self-exciting Faraday disc dynamo with a linear series motor to the case of a nonlinear series motor. This introduces two additional nonlinear symmetry-breaking terms into the governing dynamo equations. We investigate the consequences for the identification of a possible template on which the unstable periodic orbits (UPOs) lie. By computing Gauss linking numbers between pairs of UPOs, we show that their values are not incompatible with those for a template for the Lorenz attractor for its classic parameter values. © 2011 The Royal Society.
first_indexed 2024-03-06T20:32:16Z
format Journal article
id oxford-uuid:3170223b-a6df-46db-94d4-28d8c1a33b2f
institution University of Oxford
last_indexed 2024-03-06T20:32:16Z
publishDate 2012
record_format dspace
spelling oxford-uuid:3170223b-a6df-46db-94d4-28d8c1a33b2f2022-03-26T13:08:04ZHome PageJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:3170223b-a6df-46db-94d4-28d8c1a33b2fSymplectic Elements at Oxford2012Moroz, IIn this paper, we extend our previous template analysis of a self-exciting Faraday disc dynamo with a linear series motor to the case of a nonlinear series motor. This introduces two additional nonlinear symmetry-breaking terms into the governing dynamo equations. We investigate the consequences for the identification of a possible template on which the unstable periodic orbits (UPOs) lie. By computing Gauss linking numbers between pairs of UPOs, we show that their values are not incompatible with those for a template for the Lorenz attractor for its classic parameter values. © 2011 The Royal Society.
spellingShingle Moroz, I
Home Page
title Home Page
title_full Home Page
title_fullStr Home Page
title_full_unstemmed Home Page
title_short Home Page
title_sort home page
work_keys_str_mv AT morozi homepage