Adversarial robustness certification for Bayesian neural networks
We study the problem of certifying the robustness of Bayesian neural networks (BNNs) to adversarial input perturbations. Specifically, we define two notions of robustness for BNNs in an adversarial setting: probabilistic robustness and decision robustness. The former deals with the probabilistic beh...
Asıl Yazarlar: | Wicker, M, Patane, A, Laurenti, L, Kwiatkowska, M |
---|---|
Materyal Türü: | Conference item |
Dil: | English |
Baskı/Yayın Bilgisi: |
Springer
2024
|
Benzer Materyaller
-
Certification of iterative predictions in Bayesian neural networks
Yazar:: Wicker, M, ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
Bayesian inference with certifiable adversarial robustness
Yazar:: Wicker, M, ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
Statistical guarantees for the robustness of Bayesian neural networks
Yazar:: Cardelli, L, ve diğerleri
Baskı/Yayın Bilgisi: (2019) -
Adversarial robustness of Bayesian neural networks
Yazar:: Wicker, M
Baskı/Yayın Bilgisi: (2021) -
Probabilistic safety for bayesian neural networks
Yazar:: Wicker, M, ve diğerleri
Baskı/Yayın Bilgisi: (2020)