osl-dynamics: a toolbox for modelling fast dynamic brain activity

Neural activity contains rich spatio-temporal structure that corresponds to cognition. This includes oscillatory bursting and dynamic activity that span across networks of brain regions, all of which can occur on timescales of a tens of milliseconds. While these processes can be accessed through bra...

Descrizione completa

Dettagli Bibliografici
Autori principali: Gohil, C, Huang, R, Roberts, E, van Es, MWJ, Quinn, AJ, Vidaurre, D, Woolrich, MW
Natura: Internet publication
Lingua:English
Pubblicazione: bioRxiv 2023
Descrizione
Riassunto:Neural activity contains rich spatio-temporal structure that corresponds to cognition. This includes oscillatory bursting and dynamic activity that span across networks of brain regions, all of which can occur on timescales of a tens of milliseconds. While these processes can be accessed through brain recordings and imaging, modelling them presents methodological challenges due to their fast and transient nature. Furthermore, the exact timing and duration of interesting cognitive events is often a priori unknown. Here we present the OHBA Software Library Dynamics Toolbox (osl-dynamics), a Python-based package that can identify and describe recurrent dynamics in functional neuroimaging data on timescales as fast as tens of milliseconds. At its core are machine learning generative models that are able to adapt to the data and learn the timing, as well as the spatial and spectral characteristics, of brain activity with few assumptions. osl-dynamics incorporates state-of-the-art approaches that can be, and have been, used to elucidate brain dynamics in a wide range of data types, including magneto/electroencephalography, functional magnetic resonance imaging, invasive local field potential recordings and electrocorticography. It also provides novel summary measures of brain dynamics that can be used to inform our understanding of cognition, behaviour and disease. We hope osl-dynamics will further our understanding of brain function, through its ability to enhance the modelling of fast dynamic processes.