Duality in inhomogeneous random graphs, and the cut metric
The classical random graph model $G(n,\lambda/n)$ satisfies a `duality principle', in that removing the giant component from a supercritical instance of the model leaves (essentially) a subcritical instance. Such principles have been proved for various models; they are useful since it is often...
主要な著者: | Janson, S, Riordan, O |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
2009
|
類似資料
-
Susceptibility in inhomogeneous random graphs
著者:: Janson, S, 等
出版事項: (2009) -
The cut metric, random graphs, and branching processes
著者:: Bollobas, B, 等
出版事項: (2009) -
The phase transition in inhomogeneous random graphs
著者:: Bollobas, B, 等
出版事項: (2005) -
Sparse graphs: metrics and random models
著者:: Bollobas, B, 等
出版事項: (2008) -
Sparse random graphs with clustering
著者:: Bollobas, B, 等
出版事項: (2008)